5 research outputs found

    Regular Topologies for Gigabit Wide-Area Networks: Congestion Avoidance Testbed Experiments

    Get PDF
    This document is Volume 3 of the final technical report on the work performed by SRI International (SRI) on SRI Project 8600. The document includes source listings for all software developed by SRI under this effort. Since some of our work involved the use of ST-II and the Sun Microsystems, Inc. (Sun) High-Speed Serial Interface (HSI/S) driver, we have included some of the source developed by LBL and BBN as well. In most cases, our decision to include source developed by other contractors depended on whether it was necessary to modify the original code. If we have modified the software in any way, it is included in this document. In the case of the Traffic Generator (TG), however, we have included all the ST-II software, even though BBN performed the integration, because the ST-II software is part of the standard TG release. It is important to note that all the code developed by other contractors is in the public domain, so that all software developed under this effort can be re-created from the source included here

    Congestion Avoidance Testbed Experiments

    Get PDF
    DARTnet provides an excellent environment for executing networking experiments. Since the network is private and spans the continental United States, it gives researchers a great opportunity to test network behavior under controlled conditions. However, this opportunity is not available very often, and therefore a support environment for such testing is lacking. To help remedy this situation, part of SRI's effort in this project was devoted to advancing the state of the art in the techniques used for benchmarking network performance. The second objective of SRI's effort in this project was to advance networking technology in the area of traffic control, and to test our ideas on DARTnet, using the tools we developed to improve benchmarking networks. Networks are becoming more common and are being used by more and more people. The applications, such as multimedia conferencing and distributed simulations, are also placing greater demand on the resources the networks provide. Hence, new mechanisms for traffic control must be created to enable their networks to serve the needs of their users. SRI's objective, therefore, was to investigate a new queueing and scheduling approach that will help to meet the needs of a large, diverse user population in a "fair" way

    Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus

    Get PDF
    Abstract Background The performance and survival of deciduous trees depends on their innate ability to anticipate seasonal change. A key event is the timely production of short photoperiod-induced terminal and axillary buds that are dormant and freezing-tolerant. Some observations suggest that low temperature contributes to terminal bud initiation and dormancy. This is puzzling because low temperatures in the chilling range universally release dormancy. It also raises the broader question if the projected climate instabilities, as well as the northward migration of trees, will affect winter preparations and survival of trees. Results To gauge the response capacity of trees, we exposed juvenile hybrid aspens to a 10-h short photoperiod in combination with different day/night temperature regimes: high (24/24 °C), moderate (18/18 °C), moderate-low (18/12 °C) and low (12/12 °C), and analysed bud development, dormancy establishment, and marker gene expression. We found that low temperature during the bud formation period (pre-dormancy) upregulated dormancy-release genes of the gibberellin (GA) pathway, including the key GA biosynthesis genes GA20oxidase and GA3oxidase, the GA-receptor gene GID1, as well as GA-inducible enzymes of the 1,3-ÎČ-glucanase family that degrade callose at plasmodesmal Dormancy Sphincter Complexes. Simultaneously, this pre-dormancy low temperature perturbed the expression of flowering pathway genes, including CO, FT, CENL1, AGL14, LFY and AP1. In brief, pre-dormancy low temperature compromised bud development, dormancy establishment, and potentially vernalization. On the other hand, a high pre-dormancy temperature prevented dormancy establishment and resulted in flushing. Conclusions The results show that pre-dormancy low temperature represents a form of chilling that antagonizes dormancy establishment. Combined with available field data, this indicates that natural Populus ecotypes have evolved to avoid the adverse effects of high and low temperatures by initiating and completing dormant buds within an approximate temperature-window of 24-12 °C. Global warming and erratic temperature patterns outside this range can therefore endanger the successful propagation of deciduous perennials

    Development of a national medical leadership competency framework: the Dutch approach

    No full text
    corecore